

Course Title:	Statistical Physics
Course Code:	PHYS26353
Program: Phys	ics
Department: Physics	
College: Science	
Institution: Uni	versity of Bisha
Version: 3	
Last Revision Da	ate: 25 July 2023

2023

TP-153

Table of Contents

A. General information about the course:	3
1. Course Identification	3
2. Teaching mode (mark all that apply)	3
3. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	4
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	7
F. Assessment of Course Quality	7
G. Specification Approval Data	7

A. General information about the course:

1. Course Identification

	orean nours.	5			
2. (Course type				
Α.	University	College 🗆	Department⊠	Track	Others□
B.	Required 🖂	Elective			
3.	Level/year at wl	nich this course	e is offered:	6 th Level / 3 rd	year
4. (Course general	Description			
Thi	s course aims to	give students a	deep understanding	of the principle	s of statistical
phy	vsics and how to a	pply them to a wi	ide variety of proble	ms, the contents	of the course
incl	udes the bases of	of the thermodyn	amics and Maxwell	-Boltzmann, Fe	rmi–Dirac and

5. Pre-requirements for this course:

NA

6. Co- requirements for this course:

NA

7. Course Main Objective(s)

Bose–Einstein distributions.

Recognize bases of statistical physics.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	3	100%
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	45

B. Course Learning Outcomes (CLOs), Teaching Strategies and

Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding			
1.1	Recognize the Basic ideas of statistical distribution.	K.1		Writton tost
1.2	Define the Maxwell–Boltzmann distribution for distinguishable and indistinguishable Particles	K.1	Lectures Solve problems	Reports Homework
1.3	Describe the Fermi–Dirac and Bose–Einstein distribution.	K.1		Quizzes
2.0	Skills			
2.1	Solve problems related to the statistical distribution.	S.1		Muitton toot
2.2	Apply the Maxwell–Boltzmann distribution for distinguishable and indistinguishable Particles	S.1	Lectures Solve problems.	Reports Homework
2.3	Apply the Fermi–Dirac and Bose– Einstein distribution.	S.1		Quizzes
3.0	Values, autonomy, and responsib	ility		
3.1	Exhibit self-learning skills independently.	V.2	Self-learning	Reports Presentation

C. Course Content

No	List of Topics	Contact Hours
1.	Basic ideas 1. The macrostate 2. Microstates 3. The averaging postulate 4. Distributions	4.5
2.	Basic ideas5. The statistical method6. A model7. Statistical entropy and microstates	4.5
3.	The Statistics of distinguishable particles 1.The Boltzmann Distribution for Distinguishable Particles 2. Lagrange's Method of Undetermined Multipliers	4.5
4.	 The Statistics of distinguishable particles 3. The Single-Particle Partition Function. 4. Degeneracy 5. The Partition Function of a System 	4.5
5.	Indistinguishable Particles and Monatomic Ideal Gases1. Distinguishable and Indistinguishable States2. Identical Gas Particles - Counting the States	4.5
6.	Indistinguishable Particles and Monatomic Ideal Gases3. The Partition Function of a Monatomic Ideal Gas4. Properties of the Monatomic Ideal Gas	4.5
7.	 Diatomic Ideal Gases 1. Other Degrees of Freedom 2. Rotational Heat Capacities for Diatomic Gases 3. Tile Vibrational Partition Function of a Diatomic gases 	4.5
8.	Maxwell–Boltzmann gases 1 The validity of the Maxwell–Boltzmann limit 63 2 The Maxwell–Boltzmann distribution of speeds 65 3 The connection to thermodynamic	4.5
9.	Fermi–Dirac gases1. Properties of an ideal Fermi–Dirac gas2. Application to metals3. Application to helium-3	4.5
10.	 Bose–Einstein gases 1. Properties of an ideal Bose–Einstein gas 2. Application to helium-4 3. Phoney bosons 4. A note about cold atoms 	4.5
	Total	45

Table: The matrix of consistency between the content and the learning outcomes of the course.

			Course L	earning O	utcomes		
	1.1	1.2	1.3	2.1	2.2	2.3	3.1
Topic 1	✓			✓			✓
Topic 2	✓			✓			√
Topic 3		✓			√		√
Topic 4		✓			✓		✓
Topic 5		✓			✓		√
Topic 6		✓			✓		√
Topic 7		✓			✓		√
Topic 8			✓			√	✓
Topic 9			✓			√	√
Topic 10			✓			√	√

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework, quizzes, reports, and presentation.	1: 15	10 %
2.	First term exam	7: 8	20 %
3.	Second term exam	12:13	20 %
4.	Final exam	End of Semester	50 %

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	 Statistical mechanics a survival guide, A. M. Glazer, J. S. Wark, Oxford University Press, (2001). Statistical Physics, Tony Guénault, Publish by Springer, (2007).
Supportive References	- Fundamentals of Statistical and Thermal Physics, F. Reif, 6 th Ed., Waveland Pr Inc., (2008).
Electronic Materials	 Blackboard. PowerPoint presentations. Digital library of University of Bisha <u>https://ub.deepknowledge.io/Bisha</u>
Other Learning Materials	NA

2. Required Facilities and equipmentItemsResourcesfacilitiesClassrooms, Physics lab.Technology equipmentData show or smart board.Other equipmentNA

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Extent of achievement of course learning outcomes.	Teachers, students.	Direct (Final exams), Indirect (Questionnaire).
Effectiveness of teaching.	Teachers, students.	Indirect (Questionnaire)
Effectiveness of assessment.	Teachers, students.	Indirect (Questionnaire)
Quality of learning resources	Teachers, students.	Indirect (Questionnaire)
Quality of facilities available	Teachers, students.	Indirect (Questionnaire)
Fairness of evaluation	Peer reviewer.	Direct (Final exams reevaluation).

G. Specification Approval Data

COUNCIL /COMMITTEE	College of Science Council
REFERENCE NO.	20
DATE	17 August 2023

